Adverse effects of strenuous exercise: a densitometric and histomorphometric study in the rat

Abstract
To investigate the manner in which cancellous bone in different skeletal sites and within a bone site adapts to strenuous training, 5-wk-old male rats were subjected to intensive treadmill running [80% of maximal O2 consumption (VO2max)] for 11 wk. VO2max, tibia length, and bone mineral density were measured. Histomorphometric analysis was performed in the epiphysis, primary spongiosa (1 zero sp) and secondary spongiosa (2 zero sp) of the contralateral proximal tibia, and the 2 zero sp of thoracic and lumbar vertebrae. VO2max was increased by 39%. No changes were observed in vertebrae. Tibia length, 1 zero sp bone volume, and number of trabeculae were significantly decreased, indicating a retarded longitudinal bone growth. Bone mineral density in the proximal tibia was significantly decreased. In the epiphysis, a trabecular thinning and an increase of trabecular number were shown. In the 2 zero sp, bone volume and number of trabeculae were significantly decreased. The increased total eroded surfaces could indicate an early but transient increase in bone resorption activity. Osteoid thickness was reduced, whereas osteoclast number and osteoid surfaces were unchanged, suggesting that the observed bone loss was mostly due to an impaired osteoblastic activity. In conclusion, 1) strenuous training in young rats reduces longitudinal bone growth and induces bone loss, 2) the cancellous bone adaptation is site specific, and 3) the bone loss is mainly due to decreased osteoblastic activity rather than a global adaptation of bone remodeling.

This publication has 0 references indexed in Scilit: