The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform

Abstract
Certain solutions to Harper's equation are discrete analogues of (and approximations to) the Hermite-Gaussian functions. They are the energy eigenfunctions of a discrete algebraic analogue of the harmonic oscillator, and they lead to a definition of a discrete fractional Fourier transform (FT). The discrete fractional FT is essentially the time-evolution operator of the discrete harmonic oscillator.

This publication has 18 references indexed in Scilit: