Three-dimensional waves generated at Lindblad resonances in thermally stratified disks

Abstract
We analyze the linear, 3D response to tidal forcing of a disk that is thin and thermally stratified in the direction normal to the disk plane. We model the vertical disk structure locally as a polytrope which represents a disk of high optical depth. We solve the 3D gas-dynamic equations semi-analytically in the neighborhood of a Lindblad resonance. These solutions match asymptotically on to those valid away from resonances and provide solutions valid at all radii. We obtain the following results. 1) A variety of waves are launched at resonance. However, the f mode carries more than 95% of the torque exerted at the resonance. 2) These 3D waves collectively transport exactly the amount of angular momentum predicted by the 2D torque formula. 3) Near resonance, the f mode occupies the full vertical extent of the disk. Away from resonance, the f mode becomes confined near the surface of the disk, and, in the absence of other dissipation mechanisms, damps via shocks. The radial length scale for this process is roughly r_L/m (for resonant radius r_L and azimuthal wavenumber m), independent of the disk thickness H. This wave channeling process is due to the variations of physical quantities in r and is not due to wave refraction. 4) However, the inwardly propagating f mode launched from an m=2 inner Lindblad resonance experiences relatively minor channeling. We conclude that for binary stars, tidally generated waves in highly optically thick circumbinary disks are subject to strong nonlinear damping by the channeling mechanism, while those in circumstellar accretion disks are subject to weaker nonlinear effects. We also apply our results to waves excited by young planets for which m is approximately r/H and conclude that the waves are damped on the scale of a few H.

This publication has 0 references indexed in Scilit: