Abstract
The evolution of long, finite amplitude Rossby waves in a horizontally sheared zonal current is studied. The wave evolution is described by the Korteweg–de Vries equation or the modified Korteweg-de Vries equation depending on the atmospheric stratification. In either case, the cross-stream modal structure of these waves is given by the long-wave limit of the neutral eigensolutions of the barotropic stability equation. Both non-singular and singular eigensolutions are considered and the appropriate analysis is developed to yield a uniformly valid description of the motion in the critical-layer region where the wave speed matches the flow velocity. The analysis demonstrates that coherent, propagating, eddy structures can exist in stable shear flows and that these eddies have peculiar interaction properties quite distinct from the traditional views of turbulent motion.