Do we really have to consider covariance matrices for image features?

Abstract
Many studies have been made in the past for optimization using covariance matrices of feature points. We first describe how to compute the covariance matrix of a feature point from the gray levels by integrating existing methods. Then, we experimentally examine if thus computed covariance matrices really reflect the accuracy of the feature points. To test this, we do subpixel tem- plate matching and compute the homography and the fundamental matrix. Our conclusion is rather surprising, pointing out impor- tant elements often overlooked.

This publication has 8 references indexed in Scilit: