Estimation of Areal Rainfall Using the Radar Echo Area Time Integral

Abstract
This work extends the Area Time Integral (ATI) method of Doneaud et al., developed for the lifetime rainfall from an individual storm, and the instantaneous areawide rainfall method of Atlas et al., to the measurement of the cumulative areawide rainfall for periods up to 12 h. The database is the radar and rainfall network data for the three summers of the Florida Area Cumulus Experiment (FACE) II. For 12-h accumulations, V, over the area of 3.6 × 104 km2, we find correlations of 0.92 between radar deduced rainfall and ATI where the latter is computed at intervals from 5 min up to 1 h. The slope of the regression line V/(ATI) is 3.4 mm h−1. Using a gage network with density of 1/11 km2 over an area 1.5 × 104 km2 the correlation coefficient drops to 0.84, still sufficiently high to confirm the validity of the ATI approach. Also, with the gages the V/(ATI) slope decreases to 2.6 mm h−1. The decrease in the correlation is due largely to anomalous propagation which falsely increases storm areas, and ... Abstract This work extends the Area Time Integral (ATI) method of Doneaud et al., developed for the lifetime rainfall from an individual storm, and the instantaneous areawide rainfall method of Atlas et al., to the measurement of the cumulative areawide rainfall for periods up to 12 h. The database is the radar and rainfall network data for the three summers of the Florida Area Cumulus Experiment (FACE) II. For 12-h accumulations, V, over the area of 3.6 × 104 km2, we find correlations of 0.92 between radar deduced rainfall and ATI where the latter is computed at intervals from 5 min up to 1 h. The slope of the regression line V/(ATI) is 3.4 mm h−1. Using a gage network with density of 1/11 km2 over an area 1.5 × 104 km2 the correlation coefficient drops to 0.84, still sufficiently high to confirm the validity of the ATI approach. Also, with the gages the V/(ATI) slope decreases to 2.6 mm h−1. The decrease in the correlation is due largely to anomalous propagation which falsely increases storm areas, and ...