Emission Spectrum of the PO Molecule. Part II.2Σ–2Σ Transitions

Abstract
Rotational structure of emission bands of the PO molecule in the region 5300–3800 Å is analyzed. The spectrum is attributed to 5 electronic transitions A2Σ+–B2Σ+, F2Σ+–B2Σ+, G2Σ+–B2Σ+, H2Σ+–B2Σ+, and I2Σ+–B2Σ+, where F, G, H, and I are the new electronic states and A and B are the upper states of the well-known γ and β bands respectively. Practically all the new 2Σ states are found to be perturbed. A qualitative account of these perturbations together with a deperturbation of certain levels is given. A number of cases of predissociation are also observed. This predissociation is attributed to the presence of 4Πi, and A′2Σ+ states, which dissociate to the ground state atomic products. From this an upper limit of the dissociation energy of the ground state of PO is determined to be D0 = 49 536 cm−1. The A, D, E, G, H, and I states of this molecule are assigned as Rydberg states corresponding to the σ4s, π4p, δ3d, σ4p, σ3d, and σ5s orbitals, respectively. From them a value of 67 570 cm−1 is evaluated for the first ionization potential of PO. All the electronic states established for this molecule are described in terms of electron configurations.

This publication has 0 references indexed in Scilit: