Deterministic epidemic waves

Abstract
In the well-known deterministic model for the spread of an epidemic, one considers a population of uniform density along a line and divides the population into three classes: susceptible but uninfected, infected and infectious, infected but removed. If we denote space and time variables by s, t and let x(s, t), y(s, t), z(s, t) be the proportions of the population at (s, t) in these three classes, then x + y + z = 1 and we suppose that Here Ῡ(s, t) denotes a space average ∫ y(s + σ) p(σ) dσ, where p is a probability density function; b is the removal rate; the scale of t has been adjusted to remove a constant that would otherwise occur in (1).

This publication has 3 references indexed in Scilit: