Extended Sugar-Assisted Glycopeptide Ligations: Development, Scope, and Applications
- 13 October 2007
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 129 (44) , 13527-13536
- https://doi.org/10.1021/ja073653p
Abstract
Recently, we reported the development of sugar-assisted ligation (SAL), a novel peptide ligation method for the synthesis of glycopeptides. After screening a large number of glycoprotein sequences in a glycoprotein database, it became evident that a large proportion (approximately 53%) of O-glycosylation sites contain amino acid residues that will not undergo SAL reactions. To overcome these inherent limitations and broaden the scope of the method we report here the development of an extended SAL method. Glycopeptides containing up to six amino acid extensions N-terminal to the glycosylated residue were shown to facilitate ligation reactions with peptide thioesters, and these products were isolated in good yields. Kinetic analysis was used to show that as glycopeptides were extended by further amino acid residues, ligation reactions became slower. This finding was rationalized by molecular dynamics simulations using AMBER9. These studies suggested a general trend whereby the proximal distance between the reactive sites of the thioester intermediate (the N-terminal amine and the carbonyl carbon of the thioester) increased as glycopeptides were extended, thus slowing down the ligation rate. Each of the extended SAL methods showed broad tolerance to a number of different amino acid combinations at the ligation junction. Re-evaluation of the glycoprotein database suggested that 95% of the O-linked glycosylation sites can now be utilized to facilitate SAL or extended SAL reactions. As such, this method represents an extremely valuable tool for the synthesis of naturally occurring glycopeptides and glycoproteins. To demonstrate the applicability of the method, extended SAL was successfully implemented in the synthesis of the starting unit of the cancer-associated MUC1 glycoprotein.Keywords
This publication has 26 references indexed in Scilit:
- Second-Generation Sugar-Assisted Ligation: A Method for the Synthesis of Cysteine-Containing GlycopeptidesAngewandte Chemie International Edition in English, 2007
- Strategies for the preparation of homogenous glycoproteinsCurrent Opinion in Chemical Biology, 2006
- Synthesis and Structural Model of an α(2,6)‐Sialyl‐T Glycosylated MUC1 Eicosapeptide under Physiological ConditionsChemistry – A European Journal, 2006
- A Fully Synthetic Vaccine Consisting of a Tumor‐Associated Glycopeptide Antigen and a T‐Cell Epitope for the Induction of a Highly Specific Humoral Immune ResponseAngewandte Chemie International Edition in English, 2005
- An Orthogonal Double‐Linker Resin Facilitates the Efficient Solid‐Phase Synthesis of Complex‐Type N‐Glycopeptide Thioesters Suitable for Native Chemical LigationAngewandte Chemie International Edition in English, 2005
- Synthesis of Native Proteins by Chemical LigationAnnual Review of Biochemistry, 2000
- Synthesis of Proteins by Native Chemical LigationScience, 1994
- Malaria PathogenesisScience, 1994
- Functionalized crown ethers as an approach to the enzyme model for the synthesis of peptidesJournal of the American Chemical Society, 1985
- Über Peptidsynthesen. 8. Mitteilung Bildung von S‐haltigen Peptiden durch intramolekulare Wanderung von AminoacylrestenEuropean Journal of Organic Chemistry, 1953