Semiparametric Estimation of Treatment Effect in a Pretest–Posttest Study with Missing Data
Open Access
- 1 August 2005
- journal article
- Published by Institute of Mathematical Statistics in Statistical Science
- Vol. 20 (3) , 261-301
- https://doi.org/10.1214/088342305000000151
Abstract
The pretest–posttest study is commonplace in numerous applications. Typically, subjects are randomized to two treatments, and response is measured at baseline, prior to intervention with the randomized treatment (pretest), and at prespecified follow-up time (posttest). Interest focuses on the effect of treatments on the change between mean baseline and follow-up response. Missing posttest response for some subjects is routine, and disregarding missing cases can lead to invalid inference. Despite the popularity of this design, a consensus on an appropriate analysis when no data are missing, let alone for taking into account missing follow-up, does not exist. Under a semiparametric perspective on the pretest–posttest model, in which limited distributional assumptions on pretest or posttest response are made, we show how the theory of Robins, Rotnitzky and Zhao may be used to characterize a class of consistent treatment effect estimators and to identify the efficient estimator in the class. We then describe how the theoretical results translate into practice. The development not only shows how a unified framework for inference in this setting emerges from the Robins, Rotnitzky and Zhao theory, but also provides a review and demonstration of the key aspects of this theory in a familiar context. The results are also relevant to the problem of comparing two treatment means with adjustment for baseline covariates.Keywords
This publication has 18 references indexed in Scilit:
- Semiparametric Estimation of Treatment Effect in a Pretest‐Posttest StudyBiometrics, 2003
- Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse ModelsJournal of the American Statistical Association, 1999
- Regression Models for the Analysis of Pretest/Posttest DataPublished by JSTOR ,1997
- Estimation of Regression Coefficients When Some Regressors are not Always ObservedJournal of the American Statistical Association, 1994
- Semiparametric efficiency boundsJournal of Applied Econometrics, 1990
- Choosing a Pretest-Posttest AnalysisThe American Statistician, 1988
- Further Comparative Analyses of Pretest-Posttest Research DesignsThe American Statistician, 1983
- Comparative Analyses of Pretest-Posttest Research DesignsThe American Statistician, 1980
- Inference and Missing DataBiometrika, 1976
- A Generalization of Sampling Without Replacement From a Finite UniverseJournal of the American Statistical Association, 1952