Sharpening the predictions of big-bang nucleosynthesis
Preprint
- 13 January 1999
Abstract
Motivated by the recent measurement of the primeval abundance of deuterium, we re-examine the nuclear inputs to big-bang nucleosynthesis (BBN). Using Monte-Carlo realization of the nuclear cross-section data to directly estimate the theoretical uncertainties for the yields of D, 3-He and 7-Li, we show that previous estimates were a factor of 2 too large. We sharpen the BBN determination of the baryon density based upon deuterium, rho_B = (3.6 +/- 0.4) * 10^{-31} g/cm^3 (Omega_B h^2 = 0.019 +/- 0.0024), which leads to a predicted 4-He abundance, Y_P = 0.246 +/- 0.0014 and a stringent limit to the equivalent number of light neutrino species: N_nu < 3.20 (all at 95% cl). The predicted 7-Li abundance, 7-Li/H = (3.5 + 1.1 - 0.9) * 10^{-10}, is higher than that observed in pop II stars, (1.7 +/- 0.3) * 10^{-10} (both, 95% cl). We identify key reactions and the energies where further work is needed.Keywords
All Related Versions
- Version 1, 1999-01-13, ArXiv
- Published version: Physical Review Letters, 82 (21), 4176.
This publication has 0 references indexed in Scilit: