Both photosynthetically active radiation penetrating the overstory canopy and overstory leaf area index were determined in forty-three 12 × 12 m plots in even-aged Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands. Stands were located on the east side of Vancouver Island, British Columbia, between 300 and 800 m on flat to south-facing slopes and were from a wide range of stem densities and stocking levels. In nine core plots total tree leaf area index was estimated using regression equations from individual-tree stem diameter and stand relative density. A single extinction coefficient did not govern the attenuation of photosynthetically active radiation with respect to leaf area index. For a given leaf area index, the extinction coefficient was smaller at low relative densities because of the presence of canopy gaps. Light attenuation models assuming a single extinction coefficient seriously underpredict stand leaf area index, especially at low stand densities. A modified Beer's Law model was used to predict light penetration, which implicitly accounted for foliage clumping.