Anandamide initiates Ca2+ signaling via CB2 receptor linked to phospholipase C in calf pulmonary endothelial cells
- 1 December 2003
- journal article
- research article
- Published by Wiley in British Journal of Pharmacology
- Vol. 140 (8) , 1351-1362
- https://doi.org/10.1038/sj.bjp.0705529
Abstract
The endocannabinoid anandamide has been reported to affect neuronal cells, immune cells and smooth muscle cells via either CB1 or CB2 receptors. In endothelial cells, the receptors involved in activating signal transduction are still unclear, despite the fact that anandamide is produced in this cell type. The present study was designed to explore in detail the effect of this endocannabinoid on Ca2+ signaling in single cells of a calf pulmonary endothelial cell line. Anandamide initiated a transient Ca2+ elevation that was prevented by the CB2 receptor antagonist SR144528, but not by the CB1 antagonist SR141716A. These data were confirmed by molecular identification of the bovine CB2 receptor in these endothelial cells by partial sequencing. The phospholipase C inhibitor 1‐[6‐[[(17β)‐3‐methoxyestra‐1,3,5(10)‐trien‐17‐yl]amino]hexyl]‐1H‐pyrrole‐2,5dione and the inositol 1,4,5‐trisphosphate receptor antagonist 2‐aminoethoxydiphenylborate prevented Ca2+ signaling in response to anandamide. Using an improved cameleon probe targeted to the endoplasmic reticulum (ER), fura‐2 and ratiometric‐pericam, which is targeted to the mitochondria, anandamide was found to induce Ca2+ depletion of the ER accompanied by the activation of capacitative Ca2+ entry (CCE) and a transient elevation of mitochondrial Ca2+. These data demonstrate that anandamide stimulates the endothelial cells used in this study via CB2 receptor‐mediated activation of phospholipase C, formation of inositol 1,4,5‐trisphosphate, Ca2+ release from the ER and subsequent activation of CCE. Moreover, the cytosolic Ca2+ elevation was accompanied by a transient Ca2+ increase in the mitochondria. Thus, in addition to its actions on smooth muscle cells, anandamide also acts as a powerful stimulus for endothelial cells. British Journal of Pharmacology (2003) 140, 1351–1362. doi:10.1038/sj.bjp.0705529Keywords
This publication has 58 references indexed in Scilit:
- Mitochondria Efficiently Buffer Subplasmalemmal Ca2+Elevation during Agonist StimulationPublished by Elsevier ,2003
- Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handlingBritish Journal of Pharmacology, 2002
- A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applicationsNature Biotechnology, 2002
- SR141716A, a potent and selective antagonist of the brain cannabinoid receptorPublished by Wiley ,2001
- Circularly permuted green fluorescent proteins engineered to sense Ca 2+Proceedings of the National Academy of Sciences, 2001
- Intracellular Sodium Modulates Mitochondrial Calcium Signaling in Vascular Endothelial CellsJournal of Biological Chemistry, 2000
- Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cellsThe Journal of Physiology, 1999
- Mesenteric Vasodilation Mediated by Endothelial Anandamide ReceptorsHypertension, 1999
- ‘Endocannabinoids’ and other fatty acid derivatives with cannabimimetic properties: biochemistry and possible physiopathological relevanceBiochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 1998
- Studies on the effects of anandamide in rat hepatic arteryBritish Journal of Pharmacology, 1997