Spectroscopic and Kinetic Studies of Arabidopsis thaliana Sulfite Oxidase: Nature of the Redox-Active Orbital and Electronic Structure Contributions to Catalysis
- 8 November 2005
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 127 (47) , 16567-16577
- https://doi.org/10.1021/ja0530873
Abstract
Plant sulfite oxidase from Arabidopsis thaliana has been characterized both spectroscopically and kinetically. The enzyme is unusual in lacking the heme domain that is present in the otherwise highly homologous enzyme from vertebrate sources. In steady-state assays, the enzyme exhibits a pH maximum of 8.5 and is also found to function as a selenite oxidase. Sulfite at the lowest experimentally feasible concentrations reduces the enzyme within the dead-time of a stopped-flow instrument at 5 °C, indicating that the A. thaliana enzyme has a limiting rate constant for reduction, kred, at least 10 times greater than that of the chicken enzyme (190 s-1). The EPR parameters for the high- and low-pH forms of the A. thaliana enzyme have been determined, and the g-values are found to resemble those previously reported for the vertebrate enzymes. Finally, the A. thaliana enzyme has been probed by resonance Raman spectroscopy. A detailed analysis of the vibrational spectrum in the region where MoO stretching modes are anticipated to occur has been performed with the help of density functional theory calculations, evaluated in the context of the Raman data. Calculated frequencies obtained for two model systems have been compared to experimental resonance Raman spectra of oxidized A. thaliana sulfite oxidase catalytically cycled in both H216O and H218O. The vibrational frequency shifts observed upon 18O-labeling of the enzyme are consistent with theoretical models in which either the equatorial oxygen or both equatorial and axial atoms of the dioxomolybdenum center are labeled. Importantly, the vibrational mode description is consistent with the active site possessing geometrically inequivalent oxo ligands and a Mo dxy redox-active molecular orbital oriented in the equatorial plane forming a π-bonding interaction solely with the equatorial oxo, Oeq. Electron occupancy of this MoOeq π* redox orbital upon interaction with substrates would effectively labilize the MoOeq bond, providing the dominant contribution to lowering the activation energy for oxygen atom transfer.Keywords
This publication has 34 references indexed in Scilit:
- A system for the heterologous expression of complex redox proteins in Rhodobacter capsulatus: characterisation of recombinant sulphite:cytochrome c oxidoreductase from Starkeya novellaFEBS Letters, 2002
- Pulsed EPR Studies of Nonexchangeable Protons near the Mo(V) Center of Sulfite Oxidase: Direct Detection of the α-Proton of the Coordinated Cysteinyl Residue and Structural Implications for the Active SiteJournal of the American Chemical Society, 2002
- Direct Detection of the Proton-Containing Group Coordinated to Mo(V) in the High pH Form of Chicken Liver Sulfite Oxidase by Refocused Primary ESEEM Spectroscopy: Structural and Mechanistic ImplicationsJournal of the American Chemical Society, 2000
- Sulfite:Cytochrome c Oxidoreductase fromThiobacillus novellusJournal of Biological Chemistry, 2000
- The Kinetic Behavior of Chicken Liver Sulfite OxidaseBiochemistry, 1999
- Site-directed Mutagenesis of Recombinant Sulfite OxidasePublished by Elsevier ,1996
- EPR Studies of Oxo−Molybdenum(V) Complexes with Sulfur Donor Ligands: Implications for the Molybdenum Center of Sulfite OxidaseInorganic Chemistry, 1996
- Raman and infrared spectroscopic studies of dioxomolybdenum(VI) complexes with cysteamine chelatesInorganic Chemistry, 1986
- Hydrogen-1 NMR rate constants and mercury-199 FT NMR equilibrium constants involved in disulfide cleavage by methylmercuryJournal of the American Chemical Society, 1981
- Observation of 17O effects on MoV EPR spectra in sulfite oxidase; xanthine dehydrogenase, and MoO(SC6H5)4−Biochemical and Biophysical Research Communications, 1979