Continuous Maps of the Interval whose Periodic Points form a Closed Set

Abstract
We show that for a continuous map of a closed interval to itself, if the set of periodic points is closed, then every recurrent point is periodic. If, furthermore, the set of least periods of the periodic points is finite, then every nonwandering point is periodic. This answers a question of L. Block [Proc. Amer. Math. Soc. 67 (1977), 357-360].

This publication has 4 references indexed in Scilit: