Asymptotic Joint Normality of Outdegrees of Nodes in Random Recursive Trees

Abstract
We study the joint probability distribution of the number of nodes of outdegree 0, 1, and 2 in a random recursive tree. We complete the known partial list of exact means and variances for outdegrees up to two by obtaining exact combinatorial expressions for the remaining means, variances, and covariances. The joint probability distribution of the number of nodes of outdegree 0, 1, and 2 is shown to be asymptotically trivariate normal and the asymptotic covariance structure is explicitly determined. It is also shown how to extend the results (at least in principle) to obtain a limiting multivariate normal distribution for nodes of outdegree 0, 1, …, k.

This publication has 6 references indexed in Scilit: