The reciprocal variational approach to the Signorini problem with friction. Approximation results

Abstract
In this paper, a new variational formulation of the Signorini problem with friction is given in terms of the contact stresses. The method corresponds to the direct integral equation approach in classical elastostatic problems. First the displacement and mixed problems are briefly described together with some numerical results. Next the displacements are eliminated by the use of Green's function, and a constrained minimum problem with respect to the normal and tangential tractions on the contact boundary is derived. Then the resulting approximation procedure is studied and certain convergence results are proved. Finally, some remarks on the Signorini problem with Coulomb friction are presented. Numerical results illustrate the theory.