Identification of ABC transporters in vancomycin-resistantEnterococcus faeciumas potential targets for antibody therapy
Open Access
- 1 July 2002
- journal article
- Published by Oxford University Press (OUP) in FEMS Immunology & Medical Microbiology
- Vol. 33 (3) , 179-189
- https://doi.org/10.1111/j.1574-695x.2002.tb00589.x
Abstract
The occurrence of an outbreak of septicaemias due to vancomycin-resistant Enterococcus faecium (VRE), in Manchester, UK, provided an opportunity to examine the antibody responses in patients infected by the same strain. Immunoblotting sera from 24 cases, six of whom died, showed an immunodominant cluster of antigens at 34, 54 and 97 kDa, with a statistically significant correlate between survival and immunoglobulin G to the 34 and 97 kDa bands (PYbxA from Bacillus subtilis. A partial sequence (putative VRE ABC2) was also obtained, in the same recombinant clone, of a second ABC transporter with 72% homologue with ybaE from B. subtilis. Affinity selection with the seropositive serum and peritoneal dialysate used to screen the library showed that the eluted antibody bound to the 97, 54, 34 and 30 kDa bands. Direct amino acid sequencing identified this as a possible ABC transporter. Rabbit antiserum against peptides representing Walker A and an area adjacent to the Walker B site cross-reacted with bands at 34, 54, 97, 110 kDa and at 30, 34 and 54 kDa respectively. This therefore appeared to be an immunodominant complex of ABC transporters of which the smallest was the 30 kDa antigen. Epitope mapping of this antigen with seropositive patients’ sera delineated three linear epitopes (KVGIV, FGPKNF and RVAI). The Walker A site represented by peptide 1 (GHNGSGKSTLAKTIN), epitope RVAI represented by peptides 2 (MRRVAIAGVLAMPRE) and 3 (ELSGGQMRRVAIAGV), epitope KVGIV represented by peptide 4 (LKPIRKKVGIVFQFP), and recombinant VRE ABC1 and VRE ABC2 expressed in Escherichia coli pBAD were then used to isolate human genetically recombinant antibodies from a phage antibody display library. An assessment of the protective potential of these antibodies was carried out in a mouse model of the infection. This study suggests that an ABC transporter homologue could be a target for antibody therapy against VRE infections.Keywords
This publication has 63 references indexed in Scilit:
- Inventory, assembly and analysis of Bacillus subtilis ABC transport systemsJournal of Molecular Biology, 1999
- Vancomycin-resistant Enterococci: the clinical effect of a common nosocomial pathogenDiagnostic Microbiology and Infectious Disease, 1999
- Nosocomial enterococcal blood stream infections in the SCOPE program: Antimicrobial resistance, species occurrence, molecular testing results, and laboratory testing accuracyDiagnostic Microbiology and Infectious Disease, 1997
- The Complete Genome Sequence of Escherichia coli K-12Science, 1997
- Sequence analysis of a 50 kb region between spoOH and rrnH on the Bacillus subtilis chromosomeMicrobiology, 1996
- Serological investigation of enterococcal infections using Western blotEuropean Journal of Clinical Microbiology & Infectious Diseases, 1996
- Genetic and transcriptional organization of the Bacillus subtilis spc-α regionGene, 1996
- Isolation and sequence determination of an immunodominant antigen from Enterococcus faecalisSerodiagnosis and Immunotherapy in Infectious Disease, 1993
- Analysis of Mdr50: A Drosophila P-Glycoprotein/Multidrug Resistance Gene HomologGenomics, 1993
- Cobalt-activated aminopeptidase fromStreptococcus sanguis NCTC10904Current Microbiology, 1990