A study of the vibrational level dependent quenching of CO(v =1–16) by CO2

Abstract
The technique of time resolved Fourier spectroscopy has been used to determine rate constants for the processes CO(v)+CO2→CO(v−1)+CO2, where the vibrationally excited CO is created through electron irradiation of Ar/CO2 mixtures. The CO production mechanism, predominantly dissociative recombination of CO2+, is found to produce CO excited to as much as v=19. The CO(v) deactivation rate constants are deduced from examination of the time histories of the vibrational population distribution. From a Stern–Volmer analysis, the residual quenching not due to CO2 is attributed entirely to CO(v=0) relaxation of CO(v) and radiative decay. Experimentally determined upper bounds for the CO(Δv=1) transition probabilities for spontaneous emission have been obtained for levels 7–12.