HOLONOMIC SOFTENING: MODELS AND ANALYSIS*
- 1 April 2001
- journal article
- Published by Taylor & Francis in Mechanics of Structures and Machines
- Vol. 29 (1) , 65-84
- https://doi.org/10.1081/sme-100000003
Abstract
This paper deals with a special class of holonomic (path-independent) structural analysis problems involving nonlinear or piecewise linear softening. In particular, the formulation takes the form of a complementarity problem, an important class of mathematical problems characterized by the orthogonality of two sign-constrained vectors. A feature and difficulty associated with softening, which violates Drucker's stability postulate, is multiplicity of solutions. The main aims of this paper are to give a precise mathematical description of a wide class of softening models. This is achieved via a theoretically and computationally advantageous complementarity format. Second, key ideas underlying a recently developed complementarity solver, PATH, which has the potential of capturing any multiplicity of solutions or to show that none exists, are outlined. Two examples concerning discretized truss structures—a prototype of other more advanced finite element based structural models—are given for illustrative purposes.Keywords
This publication has 11 references indexed in Scilit:
- Complementarity problems in GAMS and the PATH solverJournal of Economic Dynamics and Control, 2000
- On the solution of a minimum weight elastoplastic problem involving displacement and complementarity constraintsComputer Methods in Applied Mechanics and Engineering, 1999
- Engineering and Economic Applications of Complementarity ProblemsSIAM Review, 1997
- LARGE DISPLACEMENT ELASTOPLASTIC ANALYSIS OF SEMIRIGID STEEL FRAMESInternational Journal for Numerical Methods in Engineering, 1996
- The path solver: a nommonotone stabilization scheme for mixed complementarity problemsOptimization Methods and Software, 1995
- Global Convergence of Damped Newton's Method for Nonsmooth Equations via the Path SearchMathematics of Operations Research, 1994
- Elastoplastic analysis of structures with nonlinear hardening: A nonlinear complementarity approachComputer Methods in Applied Mechanics and Engineering, 1993
- Normal Maps Induced by Linear TransformationsMathematics of Operations Research, 1992
- On compatible finite element models for elastic plastic analysisMeccanica, 1978
- A matrix structural theory of piecewise linear elastoplasticity with interacting yield planesMeccanica, 1970