A resonance mechanism in plane Couette flow
- 15 May 1980
- journal article
- research article
- Published by Cambridge University Press (CUP) in Journal of Fluid Mechanics
- Vol. 98 (1) , 149-159
- https://doi.org/10.1017/s0022112080000079
Abstract
The temporal evolution of small three-dimensional disturbances on viscous flows between parallel walls is studied. The initial-value problem is formally solved by using Fourier–Laplace transform techniques. The streamwise velocity component is obtained as the solution of a forced problem. As a consequence of the three-dimensionality, a resonant response is possible, leading to algebraic growth for small times. It occurs when the eigenvalues of the Orr–Sommerfeld equation coincide with the eigenvalues of the homogeneous operator for the streamwise velocity component. The resonance has been investigated numerically for plane Couette flow. The phase speed of the resonant waves equals the average mean velocity. The wavenumber combination that leads to the largest amplitude corresponds to structures highly elongated in the streamwise direction. The maximum amplitude, and the time to reach this maximum, scale with the Reynolds number. The aspect ratio of the most rapidly growing wave increases with the Reynolds number, with its spanwise wavelength approaching a constant value of about 3 channel heights.This publication has 15 references indexed in Scilit:
- Initial-value problem for boundary layer flowsPhysics of Fluids, 1979
- On a Tollmien-Schlichting wave packet produced by a turbulent spotJournal of Fluid Mechanics, 1979
- Structure and entrainment in the plane of symmetry of a turbulent spotJournal of Fluid Mechanics, 1978
- On the stability of stratified viscous plane Couette flow. Part 1. Constant buoyancy frequencyJournal of Fluid Mechanics, 1977
- An experimental investigation of the stability of plane Poiseuille flowJournal of Fluid Mechanics, 1975
- A theoretical model of a wave packet in the boundary layer on a flat plateProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1975
- On the stability of plane Couette flow to infinitesimal disturbancesJournal of Fluid Mechanics, 1973
- The flat plate boundary layer. Part 3. Comparison of theory with experimentJournal of Fluid Mechanics, 1970
- Eigenvalue bounds for the Orr—Sommerfeld equation. Part 2Journal of Fluid Mechanics, 1969
- Nonlinear Development of Disturbance in a Laminar Boundary LayerPhysics of Fluids, 1967