Using genome‐wide pathway analysis to unravel the etiology of complex diseases
Open Access
- 20 February 2009
- journal article
- research article
- Published by Wiley in Genetic Epidemiology
- Vol. 33 (5) , 419-431
- https://doi.org/10.1002/gepi.20395
Abstract
Several genome‐wide association studies (GWAS) have been published on various complex diseases. Although, new loci are found to be associated with these diseases, still only very little of the genetic risk for these diseases can be explained. As GWAS are still underpowered to find small main effects, and gene‐gene interactions are likely to play a role, the data might currently not be analyzed to its full potential. In this study, we evaluated alternative methods to study GWAS data. Instead of focusing on the single nucleotide polymorphisms (SNPs) with the highest statistical significance, we took advantage of prior biological information and tried to detect overrepresented pathways in the GWAS data. We evaluated whether pathway classification analysis can help prioritize the biological pathways most likely to be involved in the disease etiology. In this study, we present the various benefits and limitations of pathway‐classification tools in analyzing GWAS data. We show multiple differences in outcome between pathway tools analyzing the same dataset. Furthermore, analyzing randomly selected SNPs always results in significantly overrepresented pathways, large pathways have a higher chance of becoming statistically significant and the bioinformatics tools used in this study are biased toward detecting well‐defined pathways. As an example, we analyzed data from two GWAS on type 2 diabetes (T2D): the Diabetes Genetics Initiative (DGI) and the Wellcome Trust Case Control Consortium (WTCCC). Occasionally the results from the DGI and the WTCCC GWAS showed concordance in overrepresented pathways, but discordance in the corresponding genes. Thus, incorporating gene networks and pathway classification tools into the analysis can point toward significantly overrepresented molecular pathways, which cannot be picked up using traditional single‐locus analyses. However, the limitations discussed in this study, need to be addressed before these methods can be widely used. Genet. Epidemiol. 33:419–431, 2009.Keywords
This publication has 31 references indexed in Scilit:
- A second generation human haplotype map of over 3.1 million SNPsNature, 2007
- Genome–wide association studies provide new insights into type 2 diabetes aetiologyNature Reviews Genetics, 2007
- Association Studies of BMI and Type 2 Diabetes in the Neuropeptide Y PathwayDiabetes, 2007
- A strategy to search for common obesity and type 2 diabetes genesTrends in Endocrinology & Metabolism, 2007
- Inflammation and metabolic disordersNature, 2006
- A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHCNature Genetics, 2006
- GATHER: a systems approach to interpreting genomic signaturesBioinformatics, 2006
- Reconstruction of a Functional Human Gene Network, with an Application for Prioritizing Positional Candidate GenesAmerican Journal of Human Genetics, 2006
- Epistasis: too often neglected in complex trait studies?Nature Reviews Genetics, 2004
- Diabetes mellitus and genetically programmed defects in β-cell functionNature, 2001