Characterization of leucine transport by toadfish liver in vivo

Abstract
Kinetic analysis of L-leucine uptake by toadfish liver at 20 degrees C in vivo has been carried out after pulse injection of L-[14C]leucine into the hepatic portal vein. D-[3H]mannitol, which is taken up slowly by toadfish liver, is used as a marker for extracellular space and space accessible by simple diffusion. At normal plasma leucine concentration (0.1 mM), leucine uptake occurs rapidly (t1/2 = 0.25 min), representing a flux of 0.6 mumol/min for the liver as a whole. Analysis of the distribution of radioactive leucine among intracellular and extracellular free pools and protein-bound form at times of 30 s to 5 min after injection is consistent with operation of a concentrative or uphill transport system accounting for 40% of uptake at normal plasma concentration. Saturation of uptake occurs at increasing leucine loads; calculation of intracellular pool dilution from protein synthesis data indicates that 20-30% of liver intracellular space is occupied by incoming leucine during the first 2 min after portal injection. Maximal flux (V max) is 4.1 mumol/min per 7-g liver as a whole with Km = 0.6 mM. Competitive inhibition of leucine uptake is afforded by isoleucine and phenylalanine with lesser effects by aspartic acid, cysteine, methionine, threonine, tyrosine, and valine. No effect is observed with alanine, glycine, histidine, lysine, and proline.

This publication has 2 references indexed in Scilit: