Mutually unbiased maximally entangled bases in $\mathbb{C}^d\otimes\mathbb{C}^d$
Preprint
- 9 September 2016
Abstract
We study mutually unbiased maximally entangled bases (MUMEB's) in bipartite system $\mathbb{C}^d\otimes\mathbb{C}^d (d \geq 3)$. We generalize the method to construct MUMEB's given in [16], by using any commutative ring $R$ with $d$ elements and generic character of $(R,+)$ instead of $\mathbb{Z}_d=\mathbb{Z}/d\mathbb{Z}$. Particularly, if $d=p_1^{a_1}p_2^{a_2}\ldots p_s^{a_s}$ where $p_1, \ldots, p_s$ are distinct primes and $3\leq p_1^{a_1}\leq\cdots\leq p_s^{a_s}$, we present $p_1^{a_1}-1$ MUMEB's in $\mathbb{C}^d\otimes\mathbb{C}^d$ by taking $R=\mathbb{F}_{p_1^{a_1}}\oplus\cdots\oplus\mathbb{F}_{p_s^{a_s}}$, direct sum of finite fields (Theorem 3.3).
Keywords
All Related Versions
This publication has 0 references indexed in Scilit: