Using Faraday Rotation to Probe MHD Instabilities in Intracluster Media

Abstract
It has recently been suggested that conduction-driven magnetohydrodynamic (MHD) instabilities may operate at all radii within an intracluster medium (ICM), and profoundly affect the structure of a cluster's magnetic field. Where MHD instabilities dominate the dynamics of an ICM, they will re-orient magnetic field lines perpendicular to the temperature gradient inside a cooling core, or parallel to the temperature gradient outside it. This characteristic structure of magnetic field could be probed by measurements of polarized radio emission from background sources. Motivated by this possibility we have constructed 3-d models of a magnetized cooling core cluster and calculated Faraday rotation measure (RM) maps in the plane of the sky under realistic observing conditions. We compare a scenario in which magnetic field geometry is characterized by conduction driven MHD instabilities to that where it is determined by the turbulent motions. We find that future high-sensitivity spectro-polarimetric measurements of RM, such as will be enabled by the Square Kilometer Array can distinguish between these two cases, even with modest exposure times. Such observations will test the existence of conduction-driven MHD instabilities in dynamically relaxed cooling core clusters and especially in the subclass of clusters in which temperature profiles are nearly isothermal at large radii. More generally, our findings imply that observations of Faraday RM should be able to discern physical mechanisms that result in qualitatively different magnetic field topologies, without a priori knowledge about the nature of the processes.

This publication has 0 references indexed in Scilit: