The Radiation Response of a Human Colon Adenocarcinoma Grown in Monolayer, as Spheroids, and in Nude Mice

Abstract
A human colon adenocarcinoma cell line, WiDr, has been grown in monolayer, as multicellular spheroids, and as xenografted tumors in immune-deprived mice. The growth and radiation responses of the cells under these different growth conditions were compared. The mean doubling time of monolayer cultures was 0.8 day and the initial volume doubling times of spheroids and xenografts averaged 1.2 and 6 days, respectively. The mean total viable cell plating efficiencies were 82, 63, and 7% for cells from monolayers, spheroids, and xenografted tumors, respectively. The radiation responses of single cell suspensions prepared from WiDr tumors (8-10 mm in diameter), exponentially growing monolayer cultures (5 days growth), and spheroids (1200 .mu.m in diameter) irradiated in air at 4.degree. C were similar. Values for D0 were 1.5 Gy and for n between 3 and 5. Nitrogen curves were characterized by a D0 of 5 Gy and n between 3 and 6. Oxygen enhancement ratios were approximately 3.3. Both spheroids and tumors had radioresistant components to the 37.degree. C/air-breathing survival curves with estimated hypoxic fractions of 8 and 12%, respectively. The final portion of the survival curves for irradiations in nitrogen and under normal growth conditions were parallel for both tumors and spheroids. Thus WiDr spheroids appear to model accurately the radiation sensitivity of WiDr tumors.