Synthesis of Nucleosides and Oligonucleotides Containing Adducts of Acrolein and Vinyl Chloride

Abstract
Vinyl chloride and acrolein are important industrial chemicals. Both form DNA adducts, vinyl chloride after enzymatic oxidation to chlorooxirane and acrolein by direct reaction. Reaction at the N2 position of guanine is a major pathway. The resulting 2-oxoethyl and 3-oxopropyl adducts cyclize spontaneously to hydroxyethano and hydroxypropano derivatives, respectively. The two cyclic adducts have been detected in DNA exposed to these mutagens. A new method has been developed for the synthesis of deoxyguanosine adducts of chlorooxirane and acrolein, as well as oligonucleotides containing these adducts. Reaction of O6-[(trimethylsilyl)ethyl]-2-fluoro-2‘-deoxyinosine with the appropriate aminodiol followed by oxidative cleavage of the diol with NaIO4 gave the adducts in excellent yields. Reaction of oligonucleotides containing the halonucleoside with the aminodiols followed by NaIO4 efficiently created the nucleosides in the oligonucleotides. Deoxyadenosine adducts were created similarly using 6-chloropurine 9-(2‘-deoxyriboside).

This publication has 15 references indexed in Scilit: