Latent Effects of Pesticides and Toxic Substances On Sexual Differentiation of Rodents
- 1 May 1996
- journal article
- review article
- Published by SAGE Publications in Toxicology and Industrial Health
- Vol. 12 (3-4) , 515-531
- https://doi.org/10.1177/074823379601200323
Abstract
In humans and rodents, exposure to hormonally active chemicals during sex differentiation can produce morphological pseudohermaphrodism (Schardein, 1993; Gray, 1992). For example, hormonally active drugs like DES (estrogenic), Danazol (androgenic), and progestins cause urogenital malformations in the reproductive tracts of humans and rodents. The current discussion will present new information on the effects of toxic chemicals and pesticides that act on reproductive development via novel mechanisms, including germ cell toxicity, antiandrogenicity, and Ah-receptor binding. Information will be presented that describes how exposure during critical stages of life to synthetic chemicals present in our environment, such as benzidine- based dyes, antiandrogenic fungicides, 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD), and PCB congener 169, result in abnormal rodent sex differentiation. In rodents, perinatal exposure to fetal germ cell toxicants reduced the reproductive potential of female, and permanently reduced sperm production in male progeny. Phenotypic sex differentiation, however, was unaffected by these germ cell toxicants. In contrast, antiandrogenic drugs and fungicides induced profound alterations in phenotypic sex differentiation. Effects such as hypospadias, ectopic testes, vaginal pouches, agenesis of the ventral prostate, and nipple retention in male rats were observed commonly. Although these antiandrogens induced no permanent effects in female progeny, another class of chemicals, the Ah-receptor mediated toxicants, did reduce fertility in both male and female rat offspring. Cauda epididymal sperm numbers were reduced permanently in TCDD-exposed male rat and hamster progeny, and female progeny displayed malformations of the external genitalia. Other toxicants produced dramatic alterations of sex differentiation (uterus unicornis, agenesis of the vas and epididymis, and undescended testes), via mechanisms that have not been characterized yet. Since these adult/pubertal alterations resulted from gestational and/or neonatal exposures, future studies should include a comprehensive assessment of reproductive function after perinatal exposure because the developing animal is extremely sensitive to toxicants during sex differentiation, and many of the effects are difficult to detect until late in life.Keywords
This publication has 27 references indexed in Scilit:
- Effects of in Utero and Lactational 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure on Responsiveness of the Male Rat Reproductive System to Testosterone Stimulation in AdulthoodToxicology and Applied Pharmacology, 1994
- Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics: implications for policy and future research.Environmental Health Perspectives, 1994
- Partial Demasculinization and Feminization of Sex Behavior in Male Rats by in Utero and Lactational Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Not Associated with Alterations in Estrogen Receptor Binding or Volumes of Sexually Differentiated BrainToxicology and Applied Pharmacology, 1994
- Reproductive Toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in Male Rats: Different Effects of in Utero Versus Lactational ExposureToxicology and Applied Pharmacology, 1994
- The Effects of Prenatal Administration of Azo Dyes on Testicular Development in the Mouse: A Structure Activity Profile of Dyes Derived from Benzidine, Dimethylbenzidine, or DimethoxybenzidineFundamental and Applied Toxicology, 1993
- Evidence for decreasing quality of semen during past 50 years.BMJ, 1992
- Reproductive Toxicity of Commercial PCB Mixtures: LOAELs and NOAELs from Animal StudiesEnvironmental Health Perspectives, 1991
- DDT-Induced Feminization of Gull EmbryosScience, 1981
- Modifications of reproductive organs in male rats influenced prenatally or pre-and postnatally by an ?antiandrogenic? steroid (Cyproterone)Brain Structure and Function, 1968
- The identification, origin, and migration of the primordial germ cells in the mouse embryoThe Anatomical Record, 1954