Betaherpesvirus-Conserved Cytomegalovirus Tegument Protein ppUL32 (pp150) Controls Cytoplasmic Events during Virion Maturation

Abstract
The UL32 gene of human cytomegalovirus (CMV) encodes a prominent betaherpesvirus-conserved virion tegument protein, called pp150 (basic phosphoprotein/ppUL32), that accumulates within a cytoplasmic inclusion adjacent to the nucleus at late times during infection. Using a UL32 deletion mutant (ΔUL32-BAC) (where BAC is bacterial artificial chromosome), we demonstrate that pp150 is critical for virion maturation in the cytoplasmic compartment. Cotransfection of a pp150 expression plasmid with ΔUL32-BAC DNA led to complementation of the replication defect with focus formation due to secondary spread. Deletion of the amino terminus of pp150 or disruption of the betaherpesvirus conserved regions, CR1 and CR2, revealed these regions to be critical for replication. In contrast, deletion of the carboxyl terminus only partially compromised maturation while disruption of glycosylation sites had no effect. An African green monkey CMV UL32 homolog complemented ΔUL32-BAC replication but murine CMV M32 failed to complement, consistent with evolutionary divergence of rodent and primate cytomegaloviruses. Infection with ΔUL32-BAC showed normal expression of all kinetic classes of viral genes and replication of viral DNA, with accumulation of viral DNA-containing particles in the cytoplasm; however, mutant virus did not spread to adjacent cells. In contrast to this block in virion infectivity, cell-to-cell transfer of pp65-containing particles was observed, suggesting that release of dense bodies continued in the absence of pp150. These observations demonstrate that pp150 is critical for virion egress, possibly at the stage of final envelopment.