Dye-sensitized Solar Cells Using Semiconductor Thin Film Composed of Titania Nanotubes

Abstract
Over two times higher short-circuit photocurrent density was attained in the dye-sensitized solar cells by using titania nanotubes as a semiconductor thin film in the thin film thickness region in comparison with that made of P-25. Titania nanotubes were synthesized by a surfactant-assisted templating mechanism using a laurylamine hydrochloride/tetraisopropylorthotitanate with acetylacetone system.1) Nanotubes have a mono-crystalline structure of anatase and showed the highest photocatalytic activity among the commercially available nano-crystalline titania. The dye-sensitized solar cell system using the mono-crystalline titania nanotubes showed about 5% sunlight-electricity conversion.