BENEFITS OF MULTIPLE MATES IN THE CRICKETGRYLLUS BIMACULATUS

Abstract
Despite the importance of polyandry for sexual selection, the reasons why females frequently mate with several males remain poorly understood. A number of genetic benefits have been proposed, based on the idea that by taking multiple mates, females increase the likelihood that their offspring will be sired by genetically more compatible or superior males. If certain males have intrinsically “good genes,” any female mating with them will produce superior offspring. Alternatively, if some males have genetic elements that are incompatible with a particular female, then she may benefit from polyandry if the sperm of such males are less likely to fertilize her eggs. We examined these hypotheses in the field cricket Gryllus bimaculatus (Orthoptera: Gryllidae). By allocating females identical numbers of matings but different numbers of mates we investigated the influence of number of mates on female fecundity, and both short- and long-term offspring fitness. This revealed no effect of number of mates on number of eggs laid. However, hatching success of eggs increased with number of mates. This effect could not be attributed to nongenetic effects such as the possibility that polyandry reduces variance in the quantity or fertilizing ability of sperm females receive, because a control group receiving half the number of copulations showed no drop in hatching success. Offspring did not differ in survival, adult mass, size, or development time with treatment. When males were mated to several different females there were no repeatable differences between individual males in the hatching success of their mate's eggs. This suggests that improved hatching success of polyandrous females is not due to certain males having genes that improve egg viability regardless of their mate. Instead, our results support the hypothesis that certain males are genetically more compatible with certain females, and that this drives polyandry through differential fertilization success of sperm from more compatible males.
Funding Information
  • Swedish Natural Science Research Council