Vasoactive Prostaglandins in the Impending No-Reflow State

Abstract
The impending no-reflow (NRF) state was studied in the rat hindlimb to identify possible biochemical mediators producing the no-reflow phenomenon. After 5 hours of ischemia, the venous effluents draining the ischemic limb and the contralateral nonischemic limb were collected for three 30-minute time periods. Thromboxane B2 (TxB2), prostaglandin E2 (PGE2), and 6-ketoprostaglandin F, the stable metabolite of prostacyclin (PGI2), were measured by radioimmunoassay. Venous outflow rate, distal skin perfusion assessed by dermofluorometry, and histology of muscle and skin were examined in control limbs, ischemic limbs, and limbs with impending no reflow. The no-reflow state was characterized by a significantly decreased venous outflow (2 and 1.5 times more 6-ketoprostaglandin F than that observed in ischemic limbs with reflow. The biosynthesis of vasodilating prostaglandin E2 in the no-reflow state, however, was only 40 percent of the prostaglandin E2 measured in limbs with reflow. We propose that the impending no-reflow state may reflect a state of global microcirculatory “agona” vasoconstriction, most probably due to an overabundant release of the vasoconstrictor thromboxane relative to the vasodilating prostaglandin E2 and prostacyclin. The likelihood of specific biochemical mechanisms producing the no-reflow state suggests that pharmacologic agents may be able to reverse the impending no-reflow state to improve tissue survival.

This publication has 0 references indexed in Scilit: