COBE-DMR-normalisation for inflationary flat dark matter models

Abstract
The two-year COBE-DMR 53 and 90 GHz sky maps, in both galactic and ecliptic coordinates, are used to determine the normalisation of inflationary universe models with a flat global geometry and adiabatic density perturbations. The appropriately normalised cold and mixed dark matter models and cosmological constant dominated, cold dark matter models, computed for a range of values of Omega_b and h, are then compared to various measures of structure in the universe. Critical density CDM models appear to be irreconcilable with observations on both large and small scales simultaneously, whereas MDM models provide a somewhat better fit to the data. Although the COBE-DMR data alone prefer a nearly critical value for the total density, low-density cosmological constant models with Omega_0 greater than or equal to 0.15 can not be rejected at a confidence level exceeding 95%. Such models may also provide a significantly better fit to the matter distribution data than critical density CDM.

This publication has 0 references indexed in Scilit: