Chemical architecture of the posterior striatum in the human brain

Abstract
The neurochemical organization of the posterior caudate nucleus (CN) (body, gyrus and tail) and putamen (Put) was analyzed in the human brain using adjacent sections stained for acetylcholinesterase (AChE), limbic system-associated membrane protein (LAMP), enkephalin (ENK), parvalbumin (PV), calbindin (CB) and tyrosine hydroxylase (TH). Striosomes were visualized in all striatal regions but the anterior two thirds of the CN tail. They were highly immunoreactive (-ir) for ENK and LAMP, devoid of PV and AChE staining, and surrounded by a ring of tissue with pale TH- and CB-ir neuropil. In the Put, other rings of tissue completely free of ENK labeling surrounded certain striosomes (clear septa). In the CN body, gyrus and tail some markers revealed gradients and heterogeneities along the dorsoventral and mediolateral axes. A rim of striatal tissue densely stained for ENK and LAMP and poorly labeled for PV was noticeable along the lateral edge of the Put and the dorsolateral sector of the CN body. Our results illustrate a chemical architecture in the posterior striatum that is heterogeneous and slightly different from that found in the more anterior striatum.