Abstract
When an observer moves in a 3D world, optical flow fields are generated on his retina. We argue that such an observer can in principle compute the parameters of his egomotion, and following this, the relative depth map of the stationary environment solely from the instantaneous positional velocity fields (IPVF). Moreover, we argue that in the stationary world, this analysis can be done locally, and is not dependent on global properties of the optical flow under the imposed constraints (smoothness of the egomotion path, rigidity of objects, temporal continuity of perception). To investigate the method, and to analyze its performance, a computer model has been constructed which simulates an observer moving through a 3D world of stationary rectangular planes at different depths and orientations. The results suggest that the method offers a reasonable and computationally feasible means of extracting information about egomotion and surface layout from optical flows, under certain circumstances. We discuss some issues related to extending the analysis to the case of a rigid world of moving objects, and some issues related to the status of information extractable from optical flows with respect to other sources of information.

This publication has 29 references indexed in Scilit: