Abstract
Phase-shifting interferometry based on the integrating-bucket technique with sinusoidal phase modulation is studied theoretically and demonstrated experimentally to obtain phase maps from double-beam interferometers. The method uses four frames obtained by integration of the time-varying intensity in an interference pattern during the four quarters of the modulation period. An optimum sinusoidal phase modulation is found to minimize the effect of the additive noise. The absolute accuracy of the phase measurements is discussed. Possible applications of the method are demonstrated with two interference microscopes with which the phase modulation is achieved by sinusoidal oscillation of a mirror attached to a piezoelectric transducer and by sinusoidal birefringence modulation with a photoelastic modulator. In both experimental arrangements, phase images can be produced in real time at a rate of several hertz. Noise measurements are reported and compared with theory.