Kinetics of Aquation and Anation of Ruthenium(II) Arene Anticancer Complexes, Acidity and X‐ray Structures of Aqua Adducts
- 5 December 2003
- journal article
- research article
- Published by Wiley in Chemistry – A European Journal
- Vol. 9 (23) , 5810-5820
- https://doi.org/10.1002/chem.200304724
Abstract
The aqua adducts of the anticancer complexes [(η6‐X)Ru(en)Cl][PF6] (X=biphenyl (Bip) 1, X=5,8,9,10‐tetrahydroanthracene (THA) 2, X=9,10‐dihydroanthracene (DHA) 3; en=ethylenediamime) were separated by HPLC and characterised by mass spectrometry as the products of hydrolysis in water. The X‐ray structures of the aqua complexes [(η6‐X)Ru(en)Y][PF6]n, X=Bip, Y=0.5 H2O/0.5 OH, n=1.5 (4), X=THA, Y=0.5 H2O/0.5 OH, n=1.5 (5 A), X=THA, Y=H2O, n=2 (5 B), and X=DHA, Y=H2O, n=2 (6), are reported. In complex 4 there is a large propeller twist of 45° of the pendant phenyl ring with respect to the coordinated phenyl ring. Although the THA ligand in 5 A and 5 B is relatively flat, the DHA ring system in 6 is markedly bent (hinge bend ca. 35°) as in the chloro complex 3 (41°). The rates of aquation of 1–3 determined by UV/Vis spectroscopy at various ionic strengths and temperatures (1.23–2.59×10−3 s−1 at 298 K, I=0.1 M) are >20× faster than that of cisplatin. The reverse, anation reactions were very rapid on addition of 100 mM NaCl (a similar concentration to that in blood plasma). The aquation and anation reactions were about two times faster for the DHA and THA complexes compared to the biphenyl complex. The hydrolysis reactions appear to occur by an associative pathway. The pKa values of the aqua adducts were determined by 1H NMR spectroscopy as 7.71 for 4, 8.01 for 5 and 7.89 for 6. At physiologically‐relevant concentrations (0.5–5 μM) and temperature (310 K), the complexes will exist in blood plasma as >89 % chloro complex, whereas in the cell nucleus significant amounts (45–65 %) of the more reactive aqua adducts would be formed together with smaller amounts of the hydroxo complexes (9–25 %, pH 7.4, [Cl−]=4 mM).Keywords
This publication has 30 references indexed in Scilit:
- (Arene)ruthenium Complexes with Bis(oxazolines): Synthesis and Applications as Asymmetric Catalysts for Diels−Alder ReactionsOrganometallics, 2001
- Synthesis, Characterization, and Crystal Structure of α-[Ru(azpy)2(NO3)2] (azpy = 2-(Phenylazo)pyridine) and the Products of Its Reactions with Guanine DerivativesInorganic Chemistry, 2000
- WinGXsuite for small-molecule single-crystal crystallographyJournal of Applied Crystallography, 1999
- An empirical correction for absorption anisotropyActa Crystallographica Section A Foundations of Crystallography, 1995
- Stereochemical properties and x-ray structure of a water-soluble diastereomeric (arene)ruthenium(II) Schiff-base complex: [Ru(.eta.-MeC6H4Pri-p)(H2O)(L*)](ClO4), containing a weakly bound aqua ligand [HL* = (S)-(.alpha.-methylbenzyl)salicylaldimine]Inorganic Chemistry, 1993
- Triaqua(benzene)ruthenium(II) and triaqua(benzene)osmium(II): synthesis, molecular structure, and water-exchange kineticsInorganic Chemistry, 1988
- cis-Aquachlorobis(ethane-1,2-diamine)ruthenium(III) trifluoromethanesulfonate: Crystal structure and hydrolysis kineticsAustralian Journal of Chemistry, 1984
- Properties and reactivities of pentadentate ethylenediaminetetraacetate complexes of ruthenium(III) and -(II)Inorganic Chemistry, 1979
- Inverted redox catalysis: catalysis of substitution on ruthenium(II) by an extraordinarily labile ruthenium(III) metal centerJournal of the American Chemical Society, 1978
- cis-Dinitratodiammineplatinum(II), cis-Pt(NH3)2 (NO3)2. Crystalline structure and vibrational spectraInorganic Chemistry, 1977