DISCUSSION ABOUT THE ANALYTICAL CALCULATION OF THE MAGNETIC FIELD CREATED BY PERMANENT MAGNETS

Abstract
This paper presents an improvement of the calculation of the magnetic field components created by ring permanent magnets. The three-dimensional approach taken is based on the Coulombian Model. Moreover, the magnetic field components are calculated without using the vector potential or the scalar potential. It is noted that all the expressions given in this paper take into account the magnetic pole volume density for ring permanent magnets radially magnetized. We show that this volume density must be taken into account for calculating precisely the magnetic field components in the near-field or the far-field. Then, this paper presents the component switch theorem that can be used between infinite parallelepiped magnets whose cross-section is a square. This theorem implies that the magnetic field components created by an infinite parallelepiped magnet can be deducted from the ones created by the same parallelepiped magnet with a perpendicular magnetization. Then, we discuss the validity of this theorem for axisymmetric problems (ring permanent magnets). Indeed, axisymmetric problems dealing with ring permanent magnets are often treated with a 2D approach. The results presented in this paper clearly show that the two-dimensional studies dealing with the optimization of ring permanent magnet dimensions cannot be treated with the same precisions as 3D studies.