The marine osmium isotope record
Top Cited Papers
- 29 October 2000
- journal article
- Published by Wiley in Terra Nova
- Vol. 12 (5) , 205-219
- https://doi.org/10.1046/j.1365-3121.2000.00295.x
Abstract
Over the past decade the marine osmium isotope record has been developed into a new tracer in palaeoceanographic research. Several analytical developments, particularly in the past few years, have significantly increased our ability to study the behaviour of osmium in the surficial environment. The 187Os/188Os and osmium concentration of seawater, river water, rain, and hydrothermal vent fluids have been measured directly. Recently, the behaviour of osmium in estuaries–critical for estimating the marine residence time of osmium–has been studied. Our knowledge of the surficial osmium cycle has thus significantly improved. In addition, reconstructions of past variations in the marine 187Os/188Os recently have been extended back into the Mesozoic. This review attempts to summarize our current understanding of the marine osmium system–present and past.The 187Os/188Os of seawater during the Cenozoic to first order mimics the marine 87Sr/86Sr record. It is therefore tempting to interpret both records as reflecting increased input of radiogenic osmium and strontium resulting from enhanced continental weathering regulated by climatic/tectonic processes. However, the marine osmium isotope system differs fundamentally from the marine strontium isotope system. This review emphasizes three important differences. First, large impacts are capable of resetting the 187Os/188Os to unradiogenic values without significantly affecting the marine strontium system. Second, organic‐rich sediments are characterized by high 187Re/188Os; resulting 187Os/188Os ingrowth‐trajectories are similar to the average slope of the Cenozoic 187Os/188Os seawater record. Trends towards more radiogenic 187Os/188Os seawater therefore can be caused by weathering of organic‐rich sediments at a constant rate. Third, the marine residence time of osmium is sufficiently short to capture short‐periodic (glacial‐interglacial) fluctuations that are inaccessible to the buffered marine strontium isotope system. This offers the opportunity to discriminate between high‐frequency (climatic) and low‐frequency (tectonic) forcing.Keywords
This publication has 90 references indexed in Scilit:
- Late Eocene impact ejecta: geochemical and isotopic connections with the Popigai impact structureEarth and Planetary Science Letters, 2000
- Using (234U/238U) to assess diffusion rates of isotope tracers in ferromanganese crustsEarth and Planetary Science Letters, 1999
- Direct Measurement of Femtomoles of Osmium and the 187 Os/ 186 Os Ratio in SeawaterScience, 1998
- The analysis of seawater osmiumDeep Sea Research Part II: Topical Studies in Oceanography, 1996
- Glacial enrichments of authigenic Cd And U in subantarctic sediments: A climatic control on the elements' oceanic budget?Paleoceanography and Paleoclimatology, 1995
- The osmium isotopic composition of organic-rich marine sedimentsEarth and Planetary Science Letters, 1992
- Re-Os isotope systematics of Ni-Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal componentEarth and Planetary Science Letters, 1991
- Some comparative marine chemistries of rhenium, gold, silver and molybdenumApplied Geochemistry, 1986
- 187Os/186Os in marine manganese nodules and the constraints on the crustal geochemistries of rhenium and osmiumNature, 1986
- Osmium-187/Osmium-186 in Manganese Nodules and the Cretaceous-Tertiary BoundaryScience, 1983