Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans
Open Access
- 1 April 1998
- journal article
- clinical trial
- Published by Wiley in The Journal of Physiology
- Vol. 508 (2) , 625-633
- https://doi.org/10.1111/j.1469-7793.1998.625bq.x
Abstract
1 The spinal volleys evoked by single transcranial magnetic or electric stimulation over the cerebral motor cortex were recorded from a bipolar electrode inserted into the cervical epidural space of three conscious human subjects. These volleys were termed direct (D) and indirect (I) waves according to their latency. 2 We measured the size and number of volleys elicited by magnetic stimulation at various intensities with subjects at rest and during 20 or 100 % maximum contraction of the contralateral first dorsal interosseous muscle (FDI). Surface EMG activity was also recorded. 3 Electrical stimulation evoked a D‐wave volley. Magnetic stimulation at intensities up to about 15 % of stimulator output above threshold evoked only I‐waves. At higher intensities, a D‐wave could be seen in two of the three subjects. 4 At all intensities tested, voluntary contraction increased the number and size of the I‐waves, particularly during maximum contractions. However, there was only a small effect on the threshold for evoking descending activity. Voluntary contraction produced large changes in the size of EMG responses recorded from FDI. 5 Because the recorded epidural activity is destined for muscles other than the FDI, it is impossible to say to what extent increased activity contributes to voluntary facilitation of EMG responses. Indeed, our results suggest that the main factor responsible for enhancing EMG responses in the transition from rest to activity is likely to be increased excitability of spinal motoneurones, rather than increases in the corticospinal volley. The latter may be more important in producing EMG facilitation at different levels of voluntary contraction.Keywords
This publication has 19 references indexed in Scilit:
- Comparison of activation of corticospinal neurons and spinal motor neurons by magnetic and electrical transcranial stimulation in the lumbosacral cord of the anaesthetized monkeyBrain, 1997
- Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulationJournal of the Neurological Sciences, 1996
- Direct and indirect activation of human corticospinal neurons by transcranial magnetic and electrical stimulationNeuroscience Letters, 1996
- Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneuronsProgress in Neurobiology, 1996
- Task‐related variation in corticospinal output evoked by transcranial magnetic stimulation in the macaque monkey.The Journal of Physiology, 1995
- Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation.The Journal of Physiology, 1993
- Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface EMG responses in the tibialis anterior muscleElectroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 1993
- Facilitation of responses to motor cortex stimulation: Effects of isometric voluntary contractionAnnals of Neurology, 1992
- MOTOR CORTEX STIMULATION IN INTACT MANBrain, 1987
- Stimulation of the cerebral cortex in the intact human subjectNature, 1980