Beyond paradigm: Turbulence, transport, and the origin of the radial electric field in low to high confinement mode transitions in the DIII-D tokamak

Abstract
The paradigm of shear suppression of turbulence as the mechanism for the low to high confinement mode (L to H) transition is examined by quantitative comparison of the predictions of the paradigm with experimental results from the DIII‐D tokamak [Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1986), p. 159]. The L to H transition trigger is V×B rotation, not the main ion pressure gradient. The radial electric field Er shear increases before the fluctuation suppression, consistent with increasing Er shear as the cause of the turbulence suppression. The spatial dependence of the turbulence reduction is consistent with shear suppression for negative Er shear. For positive Er shear, the turbulence suppression is consistent with the effect of Er curvature for modes for which an Er well is destabilizing. Finally, the transport barrier depends on the phase angle between the density and potential fluctuations inside the Er well, an effect not included in existing L to H transition models.