Fabrication and use of metal tip and tip-on-tip probes for AFM-based device analysis

Abstract
Different techniques based on the atomic force microscope (AFM) have been developed in the last few years for the electrical characterization of semiconductor devices. The quality of these measurements strongly depends on the tip which should not only have a small radius of curvature but also a high electrical conductivity. Therefore, the choice of metal as tip material is obvious. We have developed a process scheme for the fabrication of pyramidal metal tips which are integrated into a silicon cantilever. This paper discusses this process in detail and shows how the transition was made from prototyping to batch friction using standard 150 mm silicon wafer technology. Results are presented concerning the application of such probes for two-dimensional carrier profiling of InP and silicon structures using scanning spreading resistance microscopy (SSRM) and scanning capacitance microscopy (SCM). A novel tip configuration called tip-on-tip has also been developed. This concept looks promising for future applications. We demonstrate how such a tip-on-tip configuration can be realized.

This publication has 0 references indexed in Scilit: