A Mixture Model for Longitudinal Data with Application to Assessment of Noncompliance
- 1 June 2000
- journal article
- Published by Oxford University Press (OUP) in Biometrics
- Vol. 56 (2) , 464-472
- https://doi.org/10.1111/j.0006-341x.2000.00464.x
Abstract
Summary. In clinical trials of a self‐administered drug, repeated measures of a laboratory marker, which is affected by study medication and collected in all treatment arms, can provide valuable information on population and individual summaries of compliance. In this paper, we introduce a general finite mixture of nonlinear hierarchical models that allows estimates of component membership probabilities and random effect distributions for longitudinal data arising from multiple subpopulations, such as from noncomplying and complying subgroups in clinical trials. We outline a sampling strategy for fitting these models, which consists of a sequence of Gibbs, Metropolis‐Hastings, and reversible jump steps, where the latter is required for switching between component models of different dimensions. Our model is applied to identify noncomplying subjects in the placebo arm of a clinical trial assessing the effectiveness of zidovudine (AZT) in the treatment of patients with HIV, where noncompliance was defined as initiation of AZT during the trial without the investigators' knowledge. We fit a hierarchical nonlinear change‐point model for increases in the marker MCV (mean corpuscular volume of erythrocytes) for subjects who noncomply and a constant mean random effects model for those who comply. As part of our fully Bayesian analysis, we assess the sensitivity of conclusions to prior and modeling assumptions and demonstrate how external information and covariates can be incorporated to distinguish subgroups.Keywords
This publication has 17 references indexed in Scilit:
- Practical Bayesian Density Estimation Using Mixtures of NormalsJournal of the American Statistical Association, 1997
- Practical Bayesian density estimation using mixtures of normalsJournal of the American Statistical Association, 1997
- Bayesian Tobit Modeling of Longitudinal Ordinal Clinical Trial Compliance Data With Nonignorable MissingnessJournal of the American Statistical Association, 1996
- Bayesian Tobit Modeling of Longitudinal Ordinal Clinical Trial Compliance Data with Nonignorable MissingnessJournal of the American Statistical Association, 1996
- Reversible jump Markov chain Monte Carlo computation and Bayesian model determinationBiometrika, 1995
- Assessing drug compliance using longitudinal marker data, with application to AIDSStatistics in Medicine, 1994
- Zidovudine in Asymptomatic Human Immunodeficiency Virus InfectionNew England Journal of Medicine, 1990
- Bayesianly Justifiable and Relevant Frequency Calculations for the Applied StatisticianThe Annals of Statistics, 1984
- The Geometry of Mixture Likelihoods: A General TheoryThe Annals of Statistics, 1983