Regulation of Mouse Colony-Stimulating Factor-1 Gene Promoter Activity by AP1 and Cellular Nucleic Acid-Binding Protein

Abstract
Macrophage colony-stimulating factor (M-CSF; CSF-1) is a member of a complex network of cytokines that regulate monocytic cell development and activity. It is produced in nearly all organs by cell types commonly found in connective tissue, including fibroblasts and monocytes. Whether different cell types share common or have divergent mechanisms for regulating CSF-1 gene expression is not known. To address this question, the identity of cis-acting elements and cognate trans-acting factors was characterized in a region of the CSF-1 promoter known to be more active in monocytes than in fibroblasts. The results of DNase I protection assays performed with fibroblast- or monocyte-derived nuclear extracts revealed a difference in the pattern of DNA-binding proteins. One protected region, common to both fibroblasts and monocytes, spans a putative phorbol ester-responsive element (TRE), and binding to the TRE by AP1 was verified with antibodies directed against c-fos and c-jun family members. Mutational analysis revealed that the TRE is required for CSF-1 gene expression in proliferating fibroblasts and monocytes. Binding of a second putative trans-acting factor, preferentially expressed in fibroblasts, to the region immediately upstream of the TRE was also detected. Screening a mouse expression library with oligonucleotides spanning the putative cis-acting element identified cellular nucleic acid-binding protein (CNBP) as the cognate binding activity, and antiserum to CNBP disrupted the electromobility shift assay complex. Mutational analysis revealed that loss of CNBP binding leads to a decrease in CSF-1 promoter activity in fibroblasts but has no effect on CSF-1 promoter activity in monocytes. Our results demonstrate that control of CSF-1 gene expression in monocytes and fibroblasts is mediated by common and cell type-specific trans-acting factors.