Effect of Alkali Metal Cations on Slow Inactivation of Cardiac Na+ Channels
Open Access
- 1 July 1997
- journal article
- Published by Rockefeller University Press in The Journal of general physiology
- Vol. 110 (1) , 23-33
- https://doi.org/10.1085/jgp.110.1.23
Abstract
Human heart Na+ channels were expressed transiently in both mammalian cells and Xenopus oocytes, and Na+ currents measured using 150 mM intracellular Na+. The kinetics of decaying outward Na+ current in response to 1-s depolarizations in the F1485Q mutant depends on the predominant cation in the extracellular solution, suggesting an effect on slow inactivation. The decay rate is lower for the alkali metal cations Li+, Na+, K+, Rb+, and Cs+ than for the organic cations Tris, tetramethylammonium, N-methylglucamine, and choline. In whole cell recordings, raising [Na+]o from 10 to 150 mM increases the rate of recovery from slow inactivation at −140 mV, decreases the rate of slow inactivation at relatively depolarized voltages, and shifts steady-state slow inactivation in a depolarized direction. Single channel recordings of F1485Q show a decrease in the number of blank (i.e., null) records when [Na+]o is increased. Significant clustering of blank records when depolarizing at a frequency of 0.5 Hz suggests that periods of inactivity represent the sojourn of a channel in a slow-inactivated state. Examination of the single channel kinetics at +60 mV during 90-ms depolarizations shows that neither open time, closed time, nor first latency is significantly affected by [Na+]o. However raising [Na+]o decreases the duration of the last closed interval terminated by the end of the depolarization, leading to an increased number of openings at the depolarized voltage. Analysis of single channel data indicates that at a depolarized voltage a single rate constant for entry into a slow-inactivated state is reduced in high [Na+]o, suggesting that the binding of an alkali metal cation, perhaps in the ion-conducting pore, inhibits the closing of the slow inactivation gate.Keywords
This publication has 54 references indexed in Scilit:
- Role of an S4-S5 linker in sodium channel inactivation probed by mutagenesis and a peptide blocker.The Journal of general physiology, 1996
- Use-Dependent Blockers and Exit Rate of the Last Ion from the Multi-Ion Pore of a K + ChannelScience, 1996
- Evidence for a direct interaction between internal tetra-alkylammonium cations and the inactivation gate of cardiac sodium channels.The Journal of general physiology, 1994
- Sodium channel mutations in paramyotonia congenita uncouple inactivation from activationNeuron, 1994
- The inactivation gate of the Shaker K+ channel behaves like an open-channel blockerNeuron, 1991
- Interactions of monovalent cations with sodium channels in squid axon. I. Modification of physiological inactivation gating.The Journal of general physiology, 1985
- Statistical properties of single sodium channels.The Journal of general physiology, 1984
- Distribution and kinetics of membrane dielectric polarization. 1. Long-term inactivation of gating currents.The Journal of general physiology, 1982
- The Effects of External Potassium and Long Duration Voltage Conditioning on the Amplitude of Sodium Currents in the Giant Axon of the Squid, Loligo pealei The Journal of general physiology, 1969
- On a Test Whether Two Samples are from the Same PopulationThe Annals of Mathematical Statistics, 1940