Bayesian analysis of threshold autoregressions

Abstract
A nonasymptotic Bayesian approach is developed for analysis of data from threshold autoregressive processes with two regimes. Using the conditional likelihood function, the marginal posterior distribution for each of the parameters is derived along with posterior means and variances. A test for linear functions of the autoregressive coefficients is presented. The approach presented uses a posterior p-value averaged over the values of the threshold. The one-step ahead predictive distribution is derived along with the predictive mean and variance. In addition, equivalent results are derived conditional upon a value of the threshold. A numerical example is presented to illustrate the approach.

This publication has 10 references indexed in Scilit: