Computing Heights on Elliptic Curves

Abstract
We describe how to compute the canonical height of points on elliptic curves. Tate has given a rapidly converging series for Archimedean local heights over R. We describe a modified version of Tate’s series which also converges over C, and give an efficient procedure for calculating local heights at non-Archimedean places. In this way we can calculate heights over number fields having complex embeddings. We also give explicit estimates for the tail of our series, and present several examples.

This publication has 12 references indexed in Scilit: