KINETIC EQUATION FOR A GAS WITH LONG-RANGE ATTRACTION

Abstract
A classical gas whose particles interact through a weak long-range attraction and a strong short-range repulsion is studied. The Liouville equation is solved as an infinite-order perturbation expansion. The terms in this series are classified by Prigogine-type diagrams according to their order in the ratio of the range of the interaction to the average interparticle distance. It is shown that, provided the range of the short-range force is much less than the average interparticle distance which, in turn, is much less than the range of the long-range force, the terms can be grouped into two classes. The one class, represented by chain diagrams, constitutes the significant contributions of the short-range interaction; the other, represented by ring diagrams, makes up, apart from a self-consistent field term, the significant contributions from the long-range force. These contributions are summed to yield a kinetic equation. The orders of magnitude of the terms in this equation are compared for various ranges of the parameters of the system. Retaining only the dominant terms then produces a set of eight kinetic equations, each of which is valid for a definite range of the parameters of the system.