Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones
- 2 November 2006
- journal article
- Published by Wiley in Environmental Microbiology
- Vol. 9 (3) , 593-602
- https://doi.org/10.1111/j.1462-2920.2006.01175.x
Abstract
Eco-physiological variation and local adaptation are key issues in microbial ecology. Here, we investigated the thermal adaptation of 19 strains of the same Spumella morphospecies (Chrysophyceae, Heterokonta). In order to test for local adaptation and the existence of specific ecotypes we analysed growth rates of these strains, which originated from different climate regions. We applied temperature-adaptation as an eco-physiological marker and analysed growth rates of the different Spumella strains at temperatures between 0°C and 35°C. The temperatures allowing for maximal growth of strains from temperate and warm climatic zones ranged between 19.9°C and 33.4°C. Phylogenetically, most of these 'warm'-adapted strains fall into two different previously defined 18S rDNA Spumella clusters, one of them consisting of mostly soil organisms and the other one being a freshwater cluster. As a rule, the 'warm'-adapted strains of the soil cluster grew slower than the 'warm'-adapted isolates within the freshwater cluster. This difference most probably reflect different strategies, i.e. the formation of cysts at the expense of lower growth rates in soil organisms. In contrast, as expected, all isolates from Antarctica were cold-adapted and grew already around melting point of freshwater. Surprisingly, optimum temperature for these strains was between 11.8°C and 17.7°C and maximum temperature tolerated was between 14.6°C and 23.5°C. Our data indicate that despite the relatively high optimal temperature of most Antarctic strains, they may have a relative advantage below 5–10°C only. Based on the thermal adaptation of the flagellate strains the Antarctic strains were clearly separated from the other investigated strains. This may indicate a limited dispersal of flagellates to and from Antarctica. Even if the latter assumption needs support from more data, we argue that the high levels of eco-physiological and molecular microdiversity indicate that the current species concepts do not sufficiently reflect protist eco-physiological differentiationKeywords
This publication has 48 references indexed in Scilit:
- Evidence for Geographic Isolation and Signs of Endemism within a Protistan MorphospeciesApplied and Environmental Microbiology, 2006
- Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designisInternational Journal of Systematic and Evolutionary Microbiology, 2005
- Strains of the Heterotrophic Flagellate Bodo designis from Different Environments Vary Considerably with Respect to Salinity Preference and SSU rRNA Gene CompositionProtist, 2005
- Effects of prey abundance and light intensity on nutrition of a mixotrophic flagellate and its competitive relationship with an obligate heterotrophAquatic Microbial Ecology, 2004
- Darwin's heterotrophic flagellatesOphelia, 2003
- Structure of the heterotrophic flagellate community in the water column of the River Rhine (Germany)European Journal of Protistology, 2003
- Study of Genetic Diversity of Eukaryotic Picoplankton in Different Oceanic Regions by Small-Subunit rRNA Gene Cloning and SequencingApplied and Environmental Microbiology, 2001
- Effects of resuspension and mixing on population dynamics and trophic interactions in a model benthic microbial food webAquatic Microbial Ecology, 2001
- Effects of temperature on the size of aquatic ectotherms: Exceptions to the general ruleJournal of Thermal Biology, 1995
- A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial speciesMarine Ecology Progress Series, 1994