Allele sharing at six VNTR loci and genetic distances among three ethnically defined human populations
- 1 January 1992
- journal article
- Published by Wiley in American Journal of Human Biology
- Vol. 4 (3) , 387-397
- https://doi.org/10.1002/ajhb.1310040315
Abstract
Because of their high degree of polymorphisms, the variable number of tandem repeat (VNTR) loci have become extremely useful in studies involving gene mapping, determination of identity and relatedness of individuals, and evolutionary relationships among populations. However, there are some concerns regarding whether or not the patterns of such genetic variation can be studied by the classical population models that are developed for studying genetic variation at blood groups and protein loci, since VNTR alleles detected by molecular size may not always be identical by descent. Although theoretical and empirical studies demonstrate that this concern is overstated, this study provides further support of the application of the traditional mutation‐drift models to predict the pattern of intra‐ and inter‐populational variation at VNTR loci. By comparing genetic variation at six VNTR loci with that at 16 blood groups and protein loci in three ethnically defined populations, we show that the patterns of variability at these two sets of loci are in general parallel to each other. Shared VNTR alleles among populations are generally more frequent than the ones which are not present in every population; the proportion of shared alleles among populations increases with increasing genetic similarity of populations; and the number of VNTR alleles is positively correlated with gene diversity at these loci. All of these observations are in agreement with the prediction of the mutation‐drift models, particularly when the possibility of forward‐backward mutations are taken into account. This parallelism of genetic variation at VNTR loci and blood groups/protein loci further asserts the potential of using such hypervariable loci for microevoltionary studies, where closely related populations may exhibit considerably less allele frequency differences at the classical blood group and protein loci.Keywords
This publication has 40 references indexed in Scilit:
- Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groupsGenomics, 1992
- A population genetic study of six VNTR loci in three ethnically defined populationsGenomics, 1991
- Characterization of eight VNTR loci by agarose gel electrophoresisGenomics, 1989
- Twenty-eight loci form a continuous linkage map of markers for human chromosome 1Genomics, 1989
- Molecular characterization of a spontaneously generated new allele at a VNTR locus: No exchange of flanking DNA sequence*1Genomics, 1988
- Distribution of Gm and Km allotypes among ten populations of Assam, IndiaAmerican Journal of Physical Anthropology, 1987
- Genetic characterization of Gainj‐ and Kalam‐Speaking peoples of Papua New GuineaAmerican Journal of Physical Anthropology, 1986
- The genetic demography of the Gainj of Papua New Guinea. I. Local differentiation of blood group, red cell enzyme, and serum protein allele frequenciesAmerican Journal of Physical Anthropology, 1982
- Electrophoretically silent alleles in a finite populationJournal of Molecular Evolution, 1976
- Analysis of Gene Diversity in Subdivided PopulationsProceedings of the National Academy of Sciences, 1973